

希土類複合酸化物 HERFD-XANESの測定と解析

近畿大学理工学部応用化学科

朝倉博行

asakura@apch.kindai.ac.jp

第99回SPring-8先端利用技術ワークショップ 2024年3月22日 13:00 - 17:20

Dy L₃-edge 高エネルギー分解能 XANES

^{2/26}

- HERFD-XANES
- 自己吸収効果
- LaAlO₃ La L₁-edge 高エネルギー分解能XANES
- LSAT La L₁-edge 直線偏光 HR-XANES
 - LSAT = (La,Sr)(Al,Ta)O₃
- 補遺

高エネルギー分解能化

La L₁-edge XANES も局所構造の変化を反映するが変化は小さい 5/26

- InSb(444) for La Lβ₃ (5138 eV)
- Si(333) for La L γ_3 (6070 eV) or Gd L α_1 (6053 eV) 7/26

Absor	otion:	per	loai	c ta		orec	ige a	and	line	ene	rgie	s						
	Н																	He
	Li	Be											В	С	N	0	F	Ne
	Na	Mg											AI	Si	Ρ	S	CI	Аг
	к	Са	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Po	At	R
	Fr	Ra	Ac	Rf	На	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	0
		Lantha	nides	Ce	Рг	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu	(Note
		Acti	nides	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
=1									[]		Conserve.							
Despect	Mahar			-1	Absor	ouon e	iges		(-h-)			Line	cence I	ines			Chur	
Name	Lantha	num			K		3802	γ γ 5 1	7 27			Ka1	K-1 a	sidon	E	33442	os	265
Number	57	mann			L1		626	- · 6	0.26		- 1	Ka2	K-L2	5 5	2.8	33034	0.2	866
Weight	138.92	amu			L2		589	1	3.94		-	Ka3	K-L1			32659	0.0	005
Density	6.15 g/	cm^3			L3		548	3	3.27			Kb1	K-M	3	73	37797	0.0	962
					M1		136	2 1	1.25			Kb2	K-N	2,3	38	3719.2	0.0	384
					M2		120	9	6.77			КЬЗ	K-M	2		37716	0.0	498
					M3		112	8	8.26		_	Kb4	K-N-	4,5	38	819.7	0.0	004
					M4		85	3	0.83		_	Kb5	K-M	4,5		38072	0.0	014
					M5 836 0.83					-	La1	L3-N	//5		4647	0.7	520	
					N2		2/4	, 8 -	2.40		- 11	Ld2	12-1	/14 //4		4030	0.0	501
					N2 205.8 -2.40				2.40		-	Lb1	13-1	14 5	5	377.7	0.0	554
					N4		105.	3	0.14		- 1 1	Lb3	L1-N	A3		5138	0.4	959
					N5		102.	5	0.14		-	Lb4	L1-N	12		5057	0.2	939
					N6							Lb5	L3-0	04,5				
					N7							Lb6	L3-N	11	5	208.3	0.0	059
					01		34.	3	0.10			Lg1	L2-N	14	5	785.7	0.1	271
					02		19.	3	0.10		_	Lg2	L1-N	12	6	6060.2	0.0	900
					03		16.	8	0.10		-	Lg3	L1-N	43		6070	0,1	202
					04						- 11	Lyo II	12-0	24 //1		4121	0.0	030
					P1						- 11	Ln	12-1	A1		4529	0.0	228
					P2						- 11	Ma	M5-	N6,7		836	1.0	000
					P3							Mb	M4-	N6		853	0.9	971
												Mg	М3-	N5	1	025.5	1.0	000
												Mz	M4,5	5-N2,3		647.2	0.0	029
	Filter [Ті																
	_	- 10 - 10																

enhaestus							
estus <u>P</u> loi	M5	836	0.83	La1	L3-M5	4647	0.7520
ption	N1	274.7	4.71	La2	L3-M4	4630	0.0837
ulas	N2	205.8	-2.40	Lb1	L2-M4	5038	0.8501
mbers	NЗ	196	-2.40	Lb2	L3-N4,5	5377.7	0.1554
ę.	N4	105.3	0.14	Lb3	L1-M3	5138	0.4959
ns	N5	102.5	0.14	Lb4	L1-M2	5057	0.2939
er	N6			Lb5	L3-04,5		
ds -	N7			Lb6	L3-N1	5208.3	0.0059
	O 1	34.3	0.10	Lg1	L2-N4	5785.7	0.1271
ire	O2	19.3	0.10	Lg2	L1-N2	6060.2	0.0900
	O3	16.8	0.10	Lg3	L1-N3	6070	0.1202
	O4			Lg6	L2-04		
	O5			LI	L3-M1	4121	0.0030
	P1			Ln	L2-M1	4529	0.0228
	P2			Ma	M5-N6,7	836	1.0000
	P3			Mb	M4-N6	853	0.9971
_				Mg	M3-N5	1025.5	1.0000
-					Marchine -	C 17.2	0.0029

La L₁-edge 高分解能 XANES (LaAlO₃)

遷移確率と自然幅

自己吸収効果について

- HERFD も蛍光 XAS 測定の一種
- いわゆる自己吸収効果 (Self-absorption effect) で、
 スペクトルがひずむ
 - 今回見えたピークは本当に正しいのだろうか?
- 例えば簡便な方法として、蛍光×線の出射角 (検出器が見込む角度)をコントロールする。

LSAT, (La,Sr)(Al,Ta)O3 基板の HERFD-XAS

LSAT の La L₁-edge 偏光 HERFD-XAS

- 水平方向回転に対して直線偏向依存性が観測された
- •90度で元に戻るように見える

FDMNES によるシミュレーション

- 主に双極子遷移で再現できる
- プレエッジに四重極子遷移の水平偏光依存性

FDMNES pDOS

TiO₂プレエッジピークの帰属

Figure 2

View of the pre-edge region of Fig l(a). Quadrupolar (q) and dipolar (d) components are also plotted under the experimental (dotted) and calculated (full) overlayed curves.

D. Cabaret, Y, Joly, H. Renevier, C. R. Natoli, J. Synchrotron Rad., 1999, 6, 258-260.

X-ray absorption linear dichroism at the Ti K edge of anatase TiO₂ single crystals

T. C. Rossi et al., Phys. Rev. B, **2019**, 100, 245207.

Anatase の吸収断面積の角度依存性

Anatase 型の TiO₂の Ti の対称性に基づく

Final state	$ heta$ Dependence $\sigma^{\mathrm{D}}(\hat{\epsilon})$ or $\sigma^{\mathrm{Q}}(\hat{\epsilon},\hat{k})$	ϕ Dependence $\sigma^{ m D}(\hat{\epsilon})$ or $\sigma^{ m Q}ig(\hat{\epsilon},\hat{k}ig)$
p_{x}, p_{y}	$-\cos^2\theta$	No dependence
$p_{ m z}$	$\cos^2 \theta$	No dependence
d_{z^2}	$\sin^2\theta\cos^2\theta$	No dependence
$d_{x^2-y^2}$	$\sin^2\theta\cos^2\theta$	$-\cos 4\phi$
d_{xy}	$\sin^2\theta\cos^2\theta$	$\cos 4\phi$
d_{yz} , d_{zx}	$-\sin^2\theta\cos^2\theta$	No dependence

T. C. Rossi et al., Phys. Rev. B, 2019, 100, 245207. 21/26

双極子遷移の吸収断面積

 $\sigma^{\mathrm{D}}(\hat{\epsilon}) = \sigma^{D}(0,0)$ m3m の対称性を持つので角度依存性はない

$$\sigma^{Q}(\hat{\epsilon},\hat{k}) = \sigma^{Q}(0,0) + \left(\frac{1}{\sqrt{14}}\right) \begin{pmatrix} 35\sin^{2}\theta\cos^{2}\theta\cos^{2}\psi \\ +5\sin^{2}\theta\sin^{2}\psi - 4 \\ \cos^{2}\theta\cos^{2}\psi\cos4\phi \\ -\sin^{2}\psi\cos4\phi \\ -2\cos\theta\sin\psi\cos\psi\sin4\phi \end{pmatrix} \sigma^{Q}(4,0)$$
四重極子遷移の吸収断面積

Final state	$ heta$ Dependence $\sigma^{\mathrm{D}}(\hat{\epsilon})$ or $\sigma^{\mathrm{Q}}ig(\hat{\epsilon},\hat{k}ig)$	ϕ Dependence $\sigma^{ m D}(\hat{\epsilon})$ or $\sigma^{ m Q}ig(\hat{\epsilon},\hat{k}ig)$
p_{x}, p_{y}	No dependence	No dependence
$p_{ m z}$	No dependence	No dependence
d_{z^2}	$\sin^2\theta\cos^2\theta$	No dependence
$d_{x^2-y^2}$	$\sin^2\theta\cos^2\theta$	$-\cos 4\phi$
d_{xy}	$\sin^2\theta\cos^2\theta$	$\cos 4\phi$
d_{yz}, d_{zx}	$-\sin^2\theta\cos^2\theta$	No dependence

- 解析的な吸収断面積の角度依存性でよく説明できる
- ・ La L₁-edge HERFD-XANES のプレエッジピークは低エネルギー側から $d_{z^2}, d_{x^2-y^2} \ge d_{yz}, d_{zx}$ に帰属できる. 23/26

Gd L₁-edge linearly polarized HERFD-XAS

alpha (degree)

A. Juhin, S. P. Collins, Y. Joly, M. Diaz-Lopez, K. Kvashnina, P. Glatzel C. Brounder, F. de Groot, *Phys. Rev. Mater.*, 2019, 3, 120801.

ランタノイド元素の L₁-edge HERFD-XAS の初めての

- ・まとめ
 - ・ 蛍光線を適切に選択すると HERFD-XANES の エネルギー分解能は著しく向上することがある.
 - 条件によりバルクで HERFD-XAS 測定してもよい.
 - ふつうの XAFS と同様にシミュレーションと理論を 組み合わせてピークの帰属が可能
 - La L₁-edge HERFD-XANES のプレエッジピークは低エ ネルギー側から $d_{z^2}, d_{x^2-y^2} \ge d_{yz}, d_{zx}$ に帰属できる.
- •展望
 - 顕微分光との組み合わせ
 - 不均一な蛍光ガラスや触媒の局所構造マッピング?
 - •系統的な測定で HERFD-XAS をふつうのツールに.

- JASRI 河村直己博士 (BL39XU, SPring-8)
- QST 石井賢二博士 (BL11XU, SPring-8)