

BL39XU のアップグレードの 現状について

公益財団法人 高輝度光科学研究センター (JASRI) 放射光利用研究基盤センター 分光推進室

Past & present status: Spectroscopy BLs

BL39XU: Experimental methods

Method & Field	Abbreviation	Instruments		
EH1: X-ray spectroscopy under extreme conditions				
Extreme XMCD High-pressure EXAFS	E-XMCD HP-EXAFS	Circular pol., Mag. field, High press., Low/high temp.		
EXAFS/XAFS EH1-1 Polarization XAFS	EXAFS-XANES P-EXAFS	Microbeam, Multi-element SDD Vertical (Circular) pol.		
X-ray emission spectroscopy Inelastic scatter. X-ray Raman scatter. EH1-2	XES RIXS/NIXS XRS	XES spectrometer Vertical/Circular pol., Mag. Field, High press., Low/High temp.		
Resonant X-ray mag. Scatter.	XRMS	Circular pol., Mag. field		
EH2: X-ray nanospectroscopy				
Nano-XMCD Nano-XAFS	N-XMCD N-EXAFS	Circular pol., Mag. field Multi-element SDD		
Nano-XRD XAFS/XMCD 2D imaging	N-XRD Img-CT	Carry-on Mag. field, Multi-axes stage for CT		
X-ray Fluo. Holography	XFH	Microbeam, Carrry-on		
Others (Development)	Others			

BL39XU: Proposals for XES exp.

XES-related proposals

Install new XES spectrometer

FY2016~

 Proposals and shifts: account for 30~40% of the total beamtime

• Scientific fields:

26

1212

2

16

✓ Physics & Chemistry

Environment chem.

- ✓ Increase of industrial users
 - (Catalysts Batteries Environment)
 - Non-proprietary
 priority & proprietary
 proposals

Term	Shifts
2023A	48
2022B	48
2022A	30
2021B	51

Gradual increase of application & accepted proposals

Application Accepted

8

2024/03/22

30

25

20

15

10

5

0

BL39XU: Beamline Upgrade

BL39XU Upgrade (July 2023 ~ July 2024)

- 1. Nano-spectroscopy imaging: Replace higher-harmonics cut mirrors (HCM)
- 2. High activity: Construct **new experimental hutch** for X-ray emission spectroscopy
- 3. High efficiency: Install focusing mirrors (KB, Wolter) for each experimental hutch
- 4. Various polarization: Install double X-ray phase retarder (DXPR)

Beamline name

■ ビームラインの名称変更

X線吸収·発光分光

X-ray absorption and emission spectroscopy

- ✓ 複合極限環境下 XAFS & XMCD @ EH1
- ✓ X線発光分光 (XES) @ EH2
- ✓ X線ナノ分光 (XAFS & XMCD) @ EH3
- 磁性材料 (Magnetic materials) [2002~]
- 生体分析 (Physicochemical) [1997~]

BL39XU: Current status @ each hutches

BL39XU: Commissioning status

SPring 8

Since January 2024

BL39XU: Before and after upgrade

	After	Before
OH	 Triple HCM (co-axis) Double XPR (plan) Attenuator in UHV (Al × 10, Si × 5) 	 Single HCM (deflect) Single XPR Attenuator in vacuum (Al × 5)
EH1: Extreme XAS·XMCD	 KB mirror (UHV) ✓ 1 (V) × 10 (H) μm ✓ < 30 keV ✓ 3 × 10¹³ photons/s @ 10 keV 	 KB mirror (He) ✓ 1.5 (V) × 9.5 (H) μm ✓ < 9.5 keV ✓ 3 ×10¹² photons/s @ 7 keV
EH2: XES·HERFD-XAS	 Monolithic Wolter (UHV) ✓ 1 (V) × 15 (H) μm ✓ < 20 keV ✓ 2 × 10¹³ photons/s @ 12 keV 	 HCM bent (Vacuum) ✓ 300 (V) × 110 (H) μm ✓ < 28 keV ✓ 6 × 10¹² photons/s @ 12 keV
EH3: Nano XAS·XMCD	 KB mirror (UHV) ✓ 75 (V) × 110 (H) nm (confirm) ✓ 4.92 ~ 16 keV ✓ ~10¹¹ photons/s @ 12 keV 	 KB mirror (UHV) ✓ 53 (V) × 47 (H) nm (record) ✓ 6 ~ 16 keV ✓ ~10¹¹ photons/s @ 12 keV

 $\ensuremath{\mathbbmm}$ Not include HCM reflection

BL39XU: Variable polarization

Fast polarization switching

- ✓ Left- and right-circular polarization switching
- ✓ Horizontal- and vertical-linear polarization switching
- ✓ Distribution of X-ray fluorescence signals by gate-circuit

Helicity-modulation technique → Linear-polarization modulation

BL39XU: Exp. Hutch1 (EH1)

XAS & XMCD spectroscopy under multiple-extreme conditions

Future issues:

- Expansion to higher magnetic field, higher pressure, and its complex conditions
- 2D imaging detector with high-efficiency for XRD measurements

SPring 8

BL39XU: Exp. Hutch3 (EH3)

XAS & XMCD microscopy & imaging

- ✓ Temperature: RT → expand LT/HT measurements
- ✓ Magnetic field: ~2.4 T (EM) / ~1 T (Projection EM)
- ✓ Fluorescence detector: 4- or 7-elements SDD + Fast DSP

BL39XU: Exp. Hutch2 (EH2)

XES·HERFD-XAS spectroscopy

- ✓ Available emission energy range: 4.4 ~ 20 keV
- ✓ Detector: PILATUS 100K (Si), SOPHIAS (Si), PiXirad-2 (CdTe)

- ✓ 1 (V) × 15 (H) µm²
- \checkmark 2 × 10¹³ photons/s @ 12 keV (Si 111)

Future issues:

- Expanded with high efficiency above 20 keV and below 4.4 keV
- High efficiency, high throughput, sample environment

BL39XU: Analyzer crystals for XES

BL39XU: XES & HERFD-XAS @ EH2

HERFD-XAS in catalytic and environmental samples

- ✓ High-energy resolution & precision measurements
- ✓ Extreme small variation in reaction phenomena
- ✓ Electronic state of buried elements

BL39XU: XES & HERFD-XAS @ EH2

XES & HERFD-XAS for strongly correlated electron systems

- $\checkmark\,$ Precise valence estimation and chemical shifts
- ✓ Electronic states under extreme conditions
- ✓ Symmetry in electronic orbitals using X-ray polarization

BiS₂-based superconductors: toward high performance

Electronic states due to phase transition:
✓ Metal-insulator (MI) transition
H. Sato, et al., ✓ Cu valence & bonding states
Phys. Rev. B 106, 155151 (2022).

X-ray absorption and emission spectroscopy

Experimental stations

- ✓ EH1: X-ray spectroscopy under multiple-extreme conditions
- ✓ EH2: X-ray emission spectroscopy (New hutch)
- ✓ EH3: X-ray nano-spectroscopy

Beamline optics

- ✓ Upgrade optics:
 - ✓ Coaxial higher-harmonics cut mirrors
 - ✓ Double X-ray phase retarder: various polarization
- ✓ Differential exhaust: Window-less transport channel

Focusing optics

- ✓ KB mirror @ EH1 \rightarrow 1 (V) × 10 (H) µm, 10¹³ ph/s @ 30 keV
- ✓ Wolter mirror @ EH2 \rightarrow 1 (V) × 15 (H) µm, 10¹³ ph/s @ 20 keV
- ✓ KB mirror @ EH3 \rightarrow 75 (V) × 107 (H) nm, 10¹¹ ph/s @ 12 keV

Public use

- ✓ Commissioning of beamline optics: 01-04/2024
- ✓ Commissioning of experimental station: 05-06/2024
- ✓ Public use: 07/2024~